
Black Hole Astrophysics 
Chapters 

6.5.2 6.6.2.3 9.1~9.2.1 

All figures extracted from online sources of from the textbook. 

Including part of Schutz Ch4 





Overview 
One of the most attractive, and also most daunting, features of astrophysics is that 
it brings together physics from many different fields and deals in the extremes of 
speed, gravity, temperature, and density.  

The deep gravitational potential of the black hole provides a stable engine block on 
which are hung all the key systems of the black hole engine. Many Schwarzschild 
radii away from the black hole lies the carburetion system.  

Fuel, in the form of gas clouds, or 
even whole stars, is tidally torn 
apart and dispersed into a 
smooth vapor of plasma flowing 
into the central regions of the 
engine. Within ten Schwarzschild 
radii lies the accretion disk 
combustion chamber, where the 
fuel releases its gravitational 
(not chemical or nuclear) energy, 
creating a power output greater 
than that of any other engine in 
the universe. 



The five exhaust systems 

Emitted 
light 

Viscous Transport of 
angular momentum 
outward in disk 

Thermal wind up to ~0.1c 

Winds and jets of 
nonthermal particles 
driven by a magnetic 
turbine up to ~0.99c 



Goal of this chapter 

Previously, we have discussed how electromagnetism works in spacetime and 
how gravity turns out to being a manifestation of curved spacetime. 

As far as we know, the conservation laws of physics operating within the 
gravitational field of the black hole and in the electromagnetic field of the plasma, 
are responsible for the inner workings of the engine components. 

This chapter on BH physics, 
therefore, will concentrate 
on the details of the 
conservation laws. 
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Quantum Mechanics & Particle Approximation 

Quantum Mechanics is the most complete description of our world, it is most 
commonly used when the wave properties of particles become important. 

However, in this book, QM is neglected 
mainly due to two reasons: 
 
1. A full General Relativistic Quantum 
Mechanical Theory hasn’t been found 
 
2. The quantum mechanical aspects (e.g. 
Hawking Radiation) of BHs are not 
observable by astronomers yet. 

Therefore, the first approximation we can use is to assume that matter can be 
described by classical particles rather than waves. 
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Stellar Dynamics 
In considering stellar dynamics, what we are most interested about is how stars 
behave within say, a galaxy, or perhaps clusters of galaxies. 
 
Therefore, although stars are themselves composed of ~1056 atoms, it is 
sufficient to consider them as a single particle, each weighing ~1033~1035g. 
 
The motion of each star is mainly governed by a gravity field produced by all the 
particles (stars, BHs, …etc) in the system and seldom do they collide. 
 

Thus, it would be sufficient to describe them with the equation of motion 
dP𝛼

dτ
= 0  

since gravity manifests itself within the derivative. 

N-body simulations, which compute the motions 
of many stars, are employed extensively in the 
study of BH formation and fueling. 
 
Discussion in Ch10,11. 



Charged Particle Dynamics 

To study a large system of charges, we have to include an important external force – 
electromagnetism. 
 

The equation of motion now reads as 
dP𝛼

dτ
=

𝑞

mc
 𝐹αβ 𝑃𝛽  

 
 
 
Where 𝐹αβ is the faraday tensor we discussed before. 𝐹αβ =

0 𝐸𝑥 𝐸𝑦 𝐸𝑧

−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦

−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥

−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 

Charged particle N-body simulations are sometimes 
used to study microscopic processes in relativistic 
jets and in very low-density accretion flows and 
winds near black holes. However, in this book we 
treat charged particles not as individual entities but 
as members of a large system of particles called a 
plasma. 
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Statistical Mechanics 
As was mentioned in Plasma Astrophysics class,  
Rather than trying to follow each particle, we can use a statistical approach and deal 
with particles in a probabilistic manner. 

This allows us to determine be able to useful thermodynamic quantities of a plasma, 
such as internal energy, pressure, entropy, heat capacities, chemical potential, etc. 

However, a still simpler statistical approach 
is taken in the case of studying the behavior 
of plasmas. 

Like particle mechanics, statistical mechanics has had important applications in 
stellar dynamics. Before computers were powerful enough to perform large N-body 
simulations, the Fokker–Planck equation (which evolves the probability density 

function for star particles) was employed to 
study the evolution of globular clusters and 
galactic star systems. This is briefly 
discussed in Chapter 10. 
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Kinetic Theory 
Kinetic theory considers a fluid or gas to be composed of many systems of particles, 
each occupying a small volume compared to the total size of the fluid being 
simulated but nevertheless still comprising a large number of particles. Each of 
these small systems is called a fluid element. 

Only one function is of interest for each particle species in each fluid element: the 
number of particles at a given point in space with similar momenta in that space — 
the phase space distribution function 

𝑓𝑖 = 𝑓𝑖  𝒳, 𝒫, 𝑡 =
𝜕6𝑁𝑖

𝜕3𝒳 𝜕3𝒫
 



The Boltzmann Equation 
Using the Liouville’s theorem, we could derive the Boltzmann Equation 
 

𝜕𝑓𝑖
𝜕𝑡

+
𝑃

𝑚𝑖
· 𝛻 𝑓𝑖 + 𝐹𝑖 · 𝛻 𝑃 𝑓𝑖 =

𝜕𝑓𝑖
𝜕𝑡

coll

 

 
Where the force includes both gravity and electromagnetic forces 
 

𝐹𝑖 = −𝑚𝑖  𝛻
 𝜓 + 𝑞𝑖  𝐸 +

𝑣 𝑖

𝑐
× 𝐵  

Extending this to a general relativistic version, it becomes 
ℙ

𝑚𝑖
· 𝛻ℕ𝑖 + 𝔽𝑖 · 𝛻ℙℕ𝑖 = ℕ

·

𝑖,coll 

With the force reduced to  

𝔽𝑖 =
𝑞𝑖

𝑚𝑖  𝑐
 𝐹αβ ℙ𝛽 

Since gravity now hides in the gradient operator. 
 
The distribution function ℕ𝑖 = ℕ𝑖  𝕏, ℙ  now is in eight-dimensional phase 
space 



Constraints 
ℙ

𝑚𝑖
· 𝛻ℕ𝑖 + 𝔽𝑖 · 𝛻ℙℕ𝑖 = ℕ

·

𝑖,coll 

However, not all momentum is allowed, only those that satisfy the conservation 
of 4-momentum magnitude ℙ2 = −𝑚𝑖

2 𝑐2 
 
this creates a limited 3D region called “mass-hyperboloid” or “mass-shell” 

The great advantage of kinetic theory is the ability to evolve the distribution of 
particle momenta at every point in space. However, current computers can 
barely cope with the evolution of the three-dimensional simulations; accurate 
evolution in 6-dimensional phase space is quite out of the question at the 
present point in time. Therefore, a simpler approach than even kinetic theory is 
needed in order to simulate the great majority of plasma flows near black holes. 



Overview of General Relativstic Mechanics 

Quantum Mechanics 

Particle 
Mechanics 

Statistical Mechanics 

Boltzmann Equation 

Multi-Fluid Equation 

One-Fluid Equation 

Equation of State 

Particle 
Approximation 

Statistical 
Approximation 

L
o

u
v

il
le

 T
h

eo
re

m
 

Moment 
Integrals 

Sum Over 
Particle Species 

Stellar Dynamics 

Charged Particles 



Toward a one-fluid equation 

Full derivation is given in Appendix D. 

Although the Boltzman Equation is already very much simplified 
compared to a complete Quantum Mechanical Description or Particle 
Mechanics, its general relativistic version is still very hard to tackle. 

Similar to what was done in Plasma Astrophysics.,  
 
We can take the moment integrals for different species to get sets of 
multi-fluid equation. 
 
Then, by summing over the different species, we could finally arrive at 
something much more tractable – The General Relativistic 
Magnetohydrodynamic Equations. 



Remarks 
While Appendix D shows how a basic set of GRMHD conservation laws can 
be derived from the general relativistic Boltzmann equation, some physical 
processes that require a good treatment of the collision terms (e.g., viscosity) 
are ignored in that derivation. In the next section we present a more 
complete version of these equations, without derivation. It is this set that we 
will need to discuss the inner workings of black hole engines. 



9.2 The Conservation Laws of 
Relativistic 

Magnetohydrodynamics 



MHD in Newtonian Gravity from 
Plasma Astrophysics class… 

Mass density 

Electric current 

Center of Mass Velocity 

Total pressure tensor 

Charge density 

Charge conservation 

Mass conservation / 

continuity equation 

Equation of motion 

generalized Ohm’s law  

Our goal is the write all the above equations in a form that is in harmony with GR. 



𝜕𝛼𝐹αβ = −4 𝜋 𝐽𝛽 

Charge & Current are 
sources of the EM fields 

𝐺αβ = 8 𝜋 𝐺 𝑇αβ 

Stress-energy Tensor is 
the source of Gravity 

How sources produce fields 

The Einstein Tensor allows the 
finding of the metric and 
therefore how matter behaves 

𝛻 · 𝑇
 

Gas + 𝑇
 

Radiation + 𝑇
 

EM = 0 

EM fields affect how 
charged matter behaves 

𝛻 · 𝐶
 

=
𝜔𝑝

2

4 𝜋
[
1

𝑐
 𝑈 + ℎ𝑞  𝔍

 
· 𝐹
 

− 휂𝑞  𝜌𝑞  𝑈
 + 𝔍

 
  

How the field affects the charges 

In a fully dynamical situation, the purpose of the conservation laws is to determine 
the three appropriate components of the current for the three appropriate 
electromagnetic field equations (6.126), and the six appropriate components of the 
stress-energy tensor for the six appropriate gravitational field equations (7.21). Then 
the field equations are used to determine how the field components evolve. 

 In a situation with a stationary metric, as will be the case for black hole engines, the 
conservation laws of energy and momentum will be used only to see how the fluid 
flows through the spacetime – essentially a study in weather prediction – but still with 
the possibility of an evolving electromagnetic field. 

 Whatever the situation, we need to produce a full set of equations that uniquely 
determine all four non-redundant components of J and all ten of T in order to 
accomplish the above tasks. 



Conservation of Rest Mass 
Mass conservation / 

continuity equation 

As we did in class, we can for simplicity consider only a single type of particle 
that represents the weighted sum of all particles that are actually in the system. 

Mass density then simply follows to be  𝜌 ≡ 𝑚0 𝑛 

The mass is the weighted average of all species m0 ≡
1

n
  ni mii  

With density defined as 𝑛 =  𝑛𝑖𝑖  

Rewriting in 4-form, the mass conservation simply becomes  

𝛻 · 𝜌 𝑈 = 0 or, in component form, ρU𝛼
;𝛼 = 0 

Actually we can divide out the 𝑚0 term to get 𝛻 · n 𝑈 = 0 

Which is simply the conservation of particle number! Not the conservation of total mass! 
This is because in relativity, mass-energy are bounded together therefore the conservation 

of mass is actually included together in the conservation of energy momentum to be 
discussed next. 



Overview of conservation of Energy-
Momentum 

𝛻 · 𝑇
 

Gas + 𝑇
 

Radiation + 𝑇
 

EM = 0 

The stress-energy tensor has the nice property of being linear. In order to include a 
new set of physical forces, one simply adds the stress-energy for those processes to 
the current set. There are three major stress-energy components that we will need 
to study black hole engines are 
 

1. 𝑇
 

Gas  includes ideal and non-ideal fluid properties 

2. 𝑇
 

EM  includes the stress-energy of the electromagnetic field 

3. 𝑇
 

Radiation describes the stress-energy of radiation  

Thus, the general conservation law reads as: 

 This conservation law will determine only four state variables: the temperature (from 
the energy conservation part) and the three spatial components of the four-velocity. 

 The time component of the four-velocity can be found from the normalization 𝑈2 = −𝑐2 



What is the Stress-Energy Tensor? 

Let’s take a few examples： 
 
1. 𝑇02 is the flux of 0 momentum across the surface of constant 𝑥2 (not x-squared).  
Since 0th component of momentum is energy, this describes the flux of energy across 
the surface of constant y. 

dx 

dz 

dy 

dt 

A simpler way to think of this is simply 
energy

dx  dz  dt
 which 

is energy flux we are used to in classical physics. 

Analogously, 𝑇0𝑗 is simply the energy flux across the 
surface of constant 𝑥𝑗 , or,  
 
 “flux of energy in the j direction” 

𝑇αβ =

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

=

𝑇00 𝑇0 𝑗

𝑇i0 𝑇ij
 

How do we read the stress-energy tensor? 

Tαβ is the flux of α momentum across the surface of constant xβ  



What is the Stress-Energy Tensor? 

𝑇αβ =

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

=

𝑇00 𝑇0 𝑗

𝑇i0 𝑇ij
 

How do we read the stress-energy tensor? 

Tαβ is the flux of α momentum across the surface of constant xβ  

2. 𝑇00 is the flux of 0 momentum across the surface of constant 𝑥0.  
Now, we again are discussing energy through some surface, but now it is a bit trickier 
because we go across the surface of constant t ! 

dx 

dz 

dt 

Using our simple way from last page, this reads as 
energy

dx  dy dz 
 which is energy density! 

Therefore the 𝑇00 component actually describes the 
energy density! 



What is the Stress-Energy Tensor? 

𝑇αβ =

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

=

𝑇00 𝑇0 𝑗

𝑇i0 𝑇ij
 

How do we read the stress-energy tensor? 

Tαβ is the flux of α momentum across the surface of constant xβ  

3. 𝑇i0 is the flux of 𝑖th momentum across the surface of constant 𝑥0.  
 
After the previous two examples, this should be easier. Since the surface of constant 𝑥0 

means density, 𝑇i0 thus describes the density of the 𝑖th component of momentum. 

dx 

dz 

dt 



What is the Stress-Energy Tensor? 

𝑇αβ =

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

=

𝑇00 𝑇0 𝑗

𝑇i0 𝑇ij
 

How do we read the stress-energy tensor? 

Tαβ is the flux of α momentum across the surface of constant xβ  

dx 

dz 

dy 

dt 

4. 𝑇i𝑗 is the flux of 𝑖th momentum across the surface of constant 𝑥𝑗 . 
  
Finally, we can interpret this term as： 
 

 “flux of the 𝑖th component of momentum in the 𝑗 direction” 
 



What is the Stress-Energy Tensor? 

𝑇αβ =

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

=

𝑇00 𝑇0 𝑗

𝑇i0 𝑇ij
 

If you forget everything else I talk about today, just bring this home with you!  
 

It’s going to be a very useful concept guide for discussing all kinds of stress-
energy tensors! 

𝑇αβ = 

Energy 
density Energy flux 

Momentum flux 
𝑇ij 

𝑇0 𝑗 
𝑇00 

𝑇i0 

The stress-energy 
tensor is symmetric. 



Basic Example  -Dust 
Consider a closed system only composed of particles moving 
together with no external field. In the rest frame of the particles,  
 
there would be no momentum since everything is at rest. 
 
there would also be no energy flux since there is nothing else to 
transfer energy to. 
 
Thus, we only have energy density which is simply equal to 𝑛 𝑚0 

In the rest frame, the tensor reads as  

𝑇αβ
𝑑𝑢𝑠𝑡

=

𝑛 𝑚0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 

Since the particles will have momentum in different frames, we must find the tensor 
form that reduces to the above for the frame in which particles are at rest, 
 

We find that, it satisfies the tensor component form 𝑇αβ
𝑑𝑢𝑠𝑡

= nm0 𝑈
𝛼 𝑈𝛽  

 

In a general tensor form, it would be 𝑇
 

dust = nm0 𝑈
 ⊗ 𝑈  



Ideal fluids 
For ideal fluids, we don’t consider viscosity and heat transfer. 

In the rest frame of a fluid element,  
 
No heat transfer means that the energy flux term is zero, therefore momentum density 
is also zero. 

Black arrows:  
direction of momentum 

Red arrows:  
direction of momentum transport 

Having no viscosity (shear) says that the momentum can 
not be transported sideways, therefore we can only have 
diagonal terms. 

𝑇αβ
ideal

=

? 0 0 0
0 ? ? ?
0 ? ? ?
0 ? ? ?

 

𝑇αβ
ideal

=

? 0 0 0
0 ? 0 0
0 0 ? 0
0 0 0 ?

 



Ideal fluids 

Then, for the diagonal terms of the momentum flux, recall 
from high school physics that pressure is force/area, i.e. 
transporting momentum to the neighboring fluid. 
 

Thus , 𝑇αβ
ideal

=

𝜌 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 

For the energy density term, we still have nm0 since a fluid is 
simply a big block of particles. 

𝑇αβ
ideal

=

𝑛 𝑚0 = 𝜌 0 0 0
0 ? 0 0
0 0 ? 0
0 0 0 ?

 

In tensor form, it is 𝑇αβ
ideal

= 𝜌 + 𝑝  𝑈𝛼 𝑈𝛽 + 𝑔αβ 𝑝,  

or 𝑇
 

𝑖𝑑𝑒𝑎𝑙 = 𝜌 + 𝑝  𝑈 ⊗ 𝑈 + 𝑝 𝑔 
−1

 

It’s easy to see that if we remove the pressure, then it reduces to the dust case. 

𝑇
 

dust = nm0 𝑈
 ⊗ 𝑈  



Conservation laws 
Before we continue into more complicated (and extremely complicated) tensors, 
Let’s look at how the stress-energy tensors actually have the conservation laws and 
the equations of motion embedded in them. 

Let’s look again at this form: 

It should be clear that density and flux are related through the conservation law. Thus, 

𝜕 (energy  density)

𝜕𝑡
+ 𝛻 · energy  flux

 
= 0 

𝜕 (momentum density)

𝜕𝑡
+ 𝛻 · momentum  flux

 
= 0 

𝑇αβ
;𝛽 = 0 or 𝛻 · 𝑇

 
= 0 

 
𝜕𝜌

𝜕𝑡
+ 𝛻 · 𝐽 = 0 

3-divergence 

Compare that to the 
conservation of charge 

we learned in undergrad. 



Equation of motion 

The derivation is 2~3 pages in Schutz and I don’t 
intend to explain through the math. 

The end result of using ‘a bit of algebra’ 

Using the conservation law 𝑇αβ
;𝛽 = 0, we can derive 

the equation of motion for a relativistic fluid. 

Consider the stress energy tensor of ideal fluid 𝑇αβ
ideal

=

𝜌 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 

𝜌 + 𝑝  𝑎𝑖 + 𝑝,𝑖 = 0 or, more concisely, 𝜌 + 𝑝  𝑎 = − 𝛻 𝑝 (3-vectors) 

This is very similar to the expression we obtained in plasma astrophysics 𝜌 𝑎 = − 𝛻 𝑝  
: the fluid is being driven by pressure gradients. 
 
The only difference is the inertial term in from of the acceleration. Having an 
additional ‘p’ term in the inertia.  



Equation of motion 

𝜌 + 𝑝  𝑎 = − 𝛻 𝑝  

How do we rationalize this additional pressure term? 

Recall that for relativistic stuff, the inertia not only 
contains rest mass, but also the kinetic energy— it is 
the mass-energy that determines how hard something 
is to accelerate. 

Therefore, an easy way to think of this is to recall that pressure is actually caused by 
the random kinetic motion within a fluid, meaning that pressure, being kinetic 
motion by origin, adds to the inertia. 

For non-relativistic situations, inertia is dominated by rest mass, thus 𝜌 ≫ 𝑝 and the 

equation reduces to  𝜌 𝑎 = − 𝛻 𝑝 as we expect. 



Before we continue… 

Next, we will derive, or show the stress-energy tensors for various cases: 
1. General fluids/gas with viscosity and heat conduction 
2. Photon gases 
3. Electromagnetic fields 

Now that it has been demonstrated that the stress-energy tensor relates to the 
equations of motion through conservation laws, we are now in place to proceed 
with more messy forms of the stress-energy tensor.  



Full Stress-Energy Tensor for a 
Perfect Gas 

𝑇αβ
fluid

=

𝜌 + 휀 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 

Similar to that of an ideal gas we argued for earlier, we now include the consideration 
of internal energy of particles and find that, in the local frame of the fluid element, 
the stress-energy tensor reads as  

And the general tensor form to be 

𝑇αβ
fluid = 𝜌 +

휀𝑔 + 𝑝𝑔

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑝𝑔 𝑔
αβ 



Heat Conduction 
The above stress-energy tensor is sufficient to describe the fluid or gas as long as the 
mean free path of particles in the fluid is very short compared to the distance over 
which thermal and kinetic properties of the fluid change.  
 
However, if hot particles can travel long distances and deposit their heat in a cooler 
region of the fluid, then we must take this heat conduction into account. 

From classical physics, we have learned that for conduction of heat,  
The heat flux is proportional to temperature gradient. Or, formally,   

 

𝑄 𝑔 = −𝐾𝑐 𝛻
 𝑇 

This tells us that we are now discussing the 
energy flux/momentum density terms. 



Heat Conduction : From 3D to 4D 
With the knowledge that 𝑄 𝑔 = −𝐾𝑐 𝛻

 𝑇 and that 

it corresponds to the 𝑇i0and 𝑇0j terms, we could 
guess that in locally flat space-time, the 
components would read as  

𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

 

However, we can see that 𝑄𝑔 is actually still a 3-vector and the above form is simply 

from an educated guess. Therefore we need to first rewrite 𝑄𝑔 into a 4-vector 𝑄𝑔
𝛼 .  

We find that it can be expressed as  
 

𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼  with 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

Or, 𝑄 𝑔 = −𝐾𝑐 𝑐2 𝑃
 

· 𝛻 𝑇 + 𝑇 𝑈 · 𝛻 𝑈  with 𝑃
 

=
1

𝑐2  𝑈 ⊗ 𝑈 + 𝑔 
−1

 

4-acceleration (how to explain?) 



Heat Conduction : From 3D to 4D 

Let’s demonstrate that 𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼  with 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 +

𝑔αβ does indeed reduce to the 3D case 𝑄 𝑔 = −𝐾𝑐 𝛻
 𝑇 

In the local frame, 𝑈𝛼 =

𝑐
0
0
0

 and 𝑔αβ = 휂αβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  Thus, 𝑐2𝑃αβ =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

As 𝑈𝛼  contain only constants, 𝛻𝛽𝑈𝛼simply vanishes. 

𝑄𝑔
𝑡

𝑄𝑔
𝑥

𝑄𝑔
𝑦

𝑄𝑔
𝑧

= 𝑄𝑔
𝛼 = −𝐾𝑐  𝑐

2 𝑃αβ 𝛻𝛽𝑇 = −𝐾𝑐  

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

𝜕𝑇

𝜕𝑡
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦
𝜕𝑇

𝜕𝑧

= −𝐾𝑐  

0
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦
𝜕𝑇

𝜕𝑧

 

Finally,  

We find that we indeed recover 𝑄 𝑔 = −𝐾𝑐 𝛻
 𝑇 in this frame. 



The projection tensor 
Just now we have defined this tensor 𝑃αβ =

1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ without explaining how it 

behaves. In the following we will demonstrate that it is a projection tensor, and what 
it does is to “project out the component of a tensor that is orthogonal to 𝑈𝛼, the 4-
velocity” 

Let’s consider a random tensor Zγδθϕ, 

the projection is PαβZγδθϕ as illustrated 
below. 

𝑈𝛼 𝑃αβ  𝑍γδθϕ =
1

𝑐2 𝑈𝛼 𝑈𝛼 𝑈𝛽 + 𝑔αβ𝑈𝛼 𝑍γδθϕ 

−𝑐2 

Taking the dot product with the 4-velocity, 

We see that it is 0 no matter what odd tensor we use! 

= −𝑈𝛽 + 𝑈𝛽 𝑍γδθϕ = 0！ 



Completing the heat conduction tensor 

𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

 

Heat conduction vector 𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼   

Projection tensor 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

Finally, we find that a viable tensor that reduces to the above components in the 
locally flat frame is  

𝑇αβ
Conduction =

1

𝑐2  𝑄𝑔
𝛼 𝑈𝛽 + 𝑈𝛼 𝑄𝑔

𝛽  

𝑇
 

Conduction =
1

𝑐2  𝑄 𝑔 ⊗ 𝑈 + 𝑈 ⊗ 𝑄 𝑔  

 

𝑇αβ
Conduction =

1

𝑐2  𝑄𝑔
𝛼 𝑈𝛽 + 𝑈𝛼 𝑄𝑔

𝛽
=

1

𝑐
 

0 0 0 0
𝑄𝑔

𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

+

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

0 0 0 0
0 0 0 0
0 0 0 0

 



Heat conduction tensor: Summary 

In the locally flat frame, 𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

 

Heat conduction tensor 𝑇αβ
Conduction =

1

𝑐2  𝑄𝑔
𝛼 𝑈𝛽 + 𝑈𝛼 𝑄𝑔

𝛽
 

 

Heat conduction vector 𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼   

 

Projection tensor 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

The moving body frame 
(MOV) 



Viscosity 

Another related process that arises because of long particle mean free paths is 
viscosity; this transports momentum rather than energy. Two kinds of viscosity 
are recognized: shear and bulk. Shear viscosity transports momentum 
perpendicular to the fluid flow, and bulk viscosity does so parallel to the flow. 



Viscosity stress-energy component 

Since viscosity works to transport momentum, it 
should manifest itself in the momentum flux term of 
the tensor. 

I’m not so familiar with this part so below mainly follows the textbook. 

𝑇αβ
Viscosity = −2 휂𝑣,𝑔 𝛴

αβ − 휁𝑣,𝑔 𝛩 𝑃αβ 

Projection tensor 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

Shear tensor 𝛴αβ ≡
1

2
[𝑃αγ 𝛻𝛾𝑈

𝛽 + 𝑃βγ 𝛻𝛾𝑈
𝛼 −

1

3
 𝛩 𝑃αβ 

Compression rate 𝛩 ≡ 𝛻𝛾𝑈
𝛾 

Shear viscosity coefficient 
휂𝑣,𝑔 = 휂𝑣,𝑔 𝜌, 𝑇   

Bulk viscosity coefficient  
휁𝑣,𝑔 = 휁𝑣,𝑔 𝜌, 𝑇  

shear bulk 



𝑇αβ
fluid

=

𝜌 + 휀 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 

𝑇αβ
Viscosity

=

0 0 0 0
0 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

0 −2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
yz

0 −2 휂𝑣,𝑔 𝛴
zx −2 휂𝑣,𝑔 𝛴

zy −2 휂𝑣,𝑔 𝛴
zz − 휁𝑣,𝑔 𝛩

 



Viscous Heating 

𝑇αβ
fluid

=

𝜌 + 휀 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 

𝑇αβ
Viscosity

=

0 0 0 0
0 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

0 −2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
yz

0 −2 휂𝑣,𝑔 𝛴
zx −2 휂𝑣,𝑔 𝛴

zy −2 휂𝑣,𝑔 𝛴
zz − 휁𝑣,𝑔 𝛩

 



Full stress-energy tensor for gas 
𝑇αβ

gas = 𝑇αβ
fluid + 𝑇αβ

Conduction + 𝑇αβ
Viscosity

= 𝜌 + p +
휀

𝑐2
 𝑈𝛼  𝑈𝛽 + 𝑔αβ 𝑝 +

1

𝑐2
 𝑄𝑔

𝛼  𝑈𝛽 + 𝑈𝛼  𝑄𝑔
𝛽

+ −2 휂𝑣,𝑔 𝛴
αβ − 휁𝑣,𝑔 𝛩 𝑃αβ  

𝑇αβ
fluid

=

𝜌 + 휀 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

 𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

 

𝑇αβ
Viscosity

=

0 0 0 0
0 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

0 −2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 −2 휂𝑣,𝑔 𝛴
yz

0 −2 휂𝑣,𝑔 𝛴
zx −2 휂𝑣,𝑔 𝛴

zy −2 휂𝑣,𝑔 𝛴
zz − 휁𝑣,𝑔 𝛩

 

𝑇αβ
gas

=

ρc2 + 휀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

𝑄𝑔
𝑦

−2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
yz

𝑄𝑔
𝑧 −2 휂𝑣,𝑔 𝛴

zx −2 휂𝑣,𝑔 𝛴
zy −2 휂𝑣,𝑔 𝛴

zz − 휁𝑣,𝑔 𝛩 + 𝑝𝑔

 



Radiation dynamics 
In many situations that we will study in the next few chapters, the fluid will be 
optically thick to radiation and both will be in thermodynamic equilibrium at 
the same temperature Tr = Tg ≡ T. 

In this case the photon gas will contribute to the fluid plasma pressure, energy 
density, heat conduction, and viscosity and will add stress-energy terms 
similar to those discussed previously for fluids. 

𝜌 = 𝜌𝑔  Total density of fluid (photons don’t contribute to this) 

𝑝 = 𝑝𝑔 + 𝑝𝑟  Total pressure 

휀 = 휀𝑔 + 휀𝑟   Total energy density 

𝑄𝛼 = 𝑄𝑔
𝛼 + 𝑄𝑟

𝛼  Total heat conduction vector 

휂𝑣 = 휂𝑣,𝑔 + 휂𝑣,𝑟 Total coefficient of shear viscosity 

휁𝑣 = 휁𝑣,𝑔 + 휁𝑣,𝑟 Total coefficient of bulk viscosity 

𝑇αβ
gas

=

ρc2 + 휀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

𝑄𝑔
𝑦

−2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
yz

𝑄𝑔
𝑧 −2 휂𝑣,𝑔 𝛴

zx −2 휂𝑣,𝑔 𝛴
zy −2 휂𝑣,𝑔 𝛴

zz − 휁𝑣,𝑔 𝛩 + 𝑝𝑔

 



Heat conduction in case of photons 

Previously, for matter, heat conduction is computed from temperature gradients. 

𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼  

In the case of radiation, the heat flux is computed from the radiative pressure 
and enthalpy, rather than from temperature. 

Often, the heat flux is a function of frequency (this will be talked about next 
week), therefore we need to integrate over different frequencies. 

𝑄𝑟
𝛼 =  

𝜕𝑄𝑟
𝛼 𝜈

𝜕𝜈
 𝑑𝜈

∞

0

 

𝜕𝑄𝑟
𝛼 𝜈

𝜕𝜈
= −

1

𝜅 𝜈  ρc
 𝑐2 𝑃αβ · 𝛻𝛽𝑝𝑟 𝜈 + 휀𝑟  𝜈 + 𝑝𝑟 𝜈  𝑈𝛾 · 𝛻𝛾𝑈

𝛼  

𝜅 𝜈  is the opacity of the specific frequency. 
𝜅 𝜈  ρ is the absorption coefficient 



Mean opacities of photons 

1

𝜅
–

𝑅

=

 
1

𝜅 𝜈
 
𝜕𝑝𝑟 𝜈

𝜕𝑇
 dν

∞

0

 
𝜕𝑝𝑟 𝜈

𝜕𝑇
 dν

∞

0

 

1

𝜅
–
′𝑅

=

 
1

𝜅 𝜈
[휀𝑟  𝜈 + 𝑝𝑟 𝜈   dν

∞

0

 휀𝑟  𝜈
∞

0
+ 𝑝𝑟 𝜈  dν

 

𝑄𝑟
𝛼 = −

𝑐

𝜅
–

𝑅 𝜌
[𝑃αβ 𝛻𝛽𝑝𝑟 −

1

𝜅
–
′𝑅

[ 휀𝑟  𝜈 + 𝑝𝑟 𝜈  𝑈𝛾 · 𝛻𝛾𝑈
𝛼  



Stress-energy tensor for radiation in 
the rest frame 

𝑇αβ
rad

=

휀𝑟 𝑄𝑟
𝑥 𝑄𝑟

𝑦
𝑄𝑟

𝑧

𝑄𝑟
𝑥 −2 휂𝑣,𝑟 𝛴

xx − 휁𝑣,𝑟 𝛩 + 𝑝𝑟 −2 휂𝑣,𝑟 𝛴
xy −2 휂𝑣,𝑟 𝛴

xz

𝑄𝑟
𝑦

−2 휂𝑣,𝑟 𝛴
yx −2 휂𝑣,𝑟 𝛴

yy − 휁𝑣,𝑟 𝛩 + 𝑝𝑟 −2 휂𝑣,𝑟 𝛴
yz

𝑄𝑟
𝑧 −2 휂𝑣,𝑟 𝛴

zx −2 휂𝑣,𝑟 𝛴
zy −2 휂𝑣,𝑟 𝛴

zz − 휁𝑣,𝑟 𝛩 + 𝑝𝑟

 

𝑇αβ
rad =

휀𝑟
𝑐2 + 𝑝𝑟  𝑈𝛼 𝑈𝛽 + 𝑔αβ 𝑝 +

1

𝑐2  𝑄𝑟
𝛼 𝑈𝛽 + 𝑈𝛼 𝑄𝑟

𝛽
+ −2 휂𝑣,𝑟 𝛴

αβ − 휁𝑣,𝑟 𝛩 𝑃αβ  

𝑇αβ
gas

=

ρc2 + 휀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 −2 휂𝑣,𝑔 𝛴

xx − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
xy −2 휂𝑣,𝑔 𝛴

xz

𝑄𝑔
𝑦

−2 휂𝑣,𝑔 𝛴
yx −2 휂𝑣,𝑔 𝛴

yy − 휁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 휂𝑣,𝑔 𝛴
yz

𝑄𝑔
𝑧 −2 휂𝑣,𝑔 𝛴

zx −2 휂𝑣,𝑔 𝛴
zy −2 휂𝑣,𝑔 𝛴

zz − 휁𝑣,𝑔 𝛩 + 𝑝𝑔

 

In the rest frame, we it can be expressed, very similarly to that for gas, as  

For comparison, 



Electrodynamic stress-energy 
Recall that the basic structure of the 
stress-energy tensor looks like this  

As we learned in the Electromagnetics 
(chap. 8 of Griffiths), there are two 
conservation laws 

1. Conservation of energy – Electromagnetic fields does work on the 

charges via the electric field 
dW

dt
=  𝐸 · 𝐽  dV 

 
After some derivation, we arrive at the formula 
 

𝜕 𝑢EM + 𝑢Mech

𝜕𝑡
+ 𝛻 · 𝑆 = 0 

 
The sum of energy density of the system (particles+fields) and the Poynting 
flux is conserved. 
 
We can see that this is the top row of the tensor. 



Electrodynamic stress-energy 

Again, after some derivation, we find 
 

𝑓
 

mech
− 𝛻 · 𝑇

 
maxwell +

1

𝑐
 
𝜕 𝑆 

𝜕𝑡
= 0 

 

With the Maxwell Tensor defined as 𝑇ij =
1

4 𝜋
[ 𝐸𝑖 𝐸𝑗 −

1

2
 𝛿ij 𝐸

2 + 𝐵𝑖  𝐵𝑗 −
1

2
 𝛿ij 𝐵

2   

 
This says that the sum of momentum contained in the system(particles+fields) and 
the momentum carried by Poynting flux is conserved. 
 
Here, it should be clear that it corresponds to the bottom 3 rows. 

2. Conservation of momentum– Electromagnetic 
fields affect charged particles through the 

Lorentz force 𝐹 = 𝑞 𝐸 +
𝑣 ×𝐵 

𝑐
 



The electrodynamic tensor 

Conservation of momentum (3-form) 𝑓
 

mech
− 𝛻 · 𝑇

 
maxwell +

1

𝑐
 
𝜕𝑆 

𝜕𝑡
= 0 

Conservation of energy (3-form) 
𝜕 𝑢EM+𝑢Mech

𝜕𝑡
+ 𝛻 · 𝑆 = 0 

Combining the two conservation laws which were written in 3-form (consider the 
EM part), and utilizing the Faraday tensor that was introduced a few weeks ago, 
 
The tensor reads as 
 

𝑇αβ
EM

=
1

4 𝜋
[𝐹αγ 𝐹𝛽

𝛾 −
1

4
 𝑔αβ 𝐹μν 𝐹μν  

 

The faraday tensor 𝐹αβ =

0 𝐸𝑥 𝐸𝑦 𝐸𝑧

−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦

−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥

−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 

 
 



The electrodynamic tensor 

In the rest frame of the fluid, the tensor components read as: 

𝑇αβ
EM

=

휀em 𝑄em
𝑥 𝑄em

𝑦
𝑄em

𝑧

𝑄em
𝑥 −

1

4 𝜋
[ 𝐸𝑥 2 + 𝐵𝑥 2 + 𝑝em −

1

4 𝜋
 𝐸𝑥 𝐸𝑦 + 𝐵𝑥 𝐵𝑦 −

1

4 𝜋
 𝐸𝑥 𝐸𝑥 + 𝐵𝑥 𝐵𝑧

𝑄em
𝑦

−
1

4 𝜋
 𝐸𝑥 𝐸𝑦 + 𝐵𝑥 𝐵𝑦 −

1

4 𝜋
[ 𝐸𝑦 2 + 𝐵𝑦 2 + 𝑝em −

1

4 𝜋
 𝐸𝑦 𝐸𝑧 + 𝐵𝑦 𝐵𝑧

𝑄em
𝑧 −

1

4 𝜋
 𝐸𝑥 𝐸𝑥 + 𝐵𝑥 𝐵𝑧 −

1

4 𝜋
 𝐸𝑦 𝐸𝑧 + 𝐵𝑦 𝐵𝑧 −

1

4 𝜋
[ 𝐸𝑧 2 + 𝐵𝑧 2 + 𝑝em

 

The energy density  

휀em = 𝑝em =
1

8 𝜋
 𝐸2 + 𝐵2  

The energy flux  

𝑄 em = − 𝑆 em ≡
1

4 𝜋
 𝐸 × 𝐵  

𝑇αβ
EM

=
1

4 𝜋
[𝐹αγ 𝐹𝛽

𝛾 −
1

4
 𝑔αβ 𝐹μν 𝐹μν  



I originally planned to finish the 
whole of 9.2 today but apparently it 

was impossible without having a 
weekend to work. 

Comet Lovejoy 


